

Recent Initiatives in Oblique HF at Space Weather Services

Phill Maher Consultancy and Development Space Weather Services 17 Nov 2017

Vertical Incidence Sounder Networks

- Space Weather Services VIS (Vertical Incidence Sounding) ionosondes maintained by Bureau Space Weather Networks.
- Worldwide GIRO network of VIS ionosondes
- Automatically scaled *f_oF2* values used for generating real time ionospheric maps.

Near Real time f_0F2 maps

- Operational model of f₀F2 maps derived using SWS-VIS, GIRO VIS and IRI model [Dr. Vickal Kumar].
- f_0F2 maps converted to T-index for use in ASAPS

2017-11-12 00:00UT SWS real time FoF2 model

ASAPS – Advanced Stand Alone Prediction System

- ASAPS software available as
 - Stand alone windows program
 - ASAPS kernel (compiled for use in Windows/Linux/BSD)
 - Under the hood of the SWS online tools
- Contains the IPS HF-radio propagation model developed by IPS Radio and Space Services (SWS) and incorporates ITUR / CCIR HF models.
- ASAPS predictions are especially accurate when they are driven by realtime T indices for the circuit or region of interest.
- T-index developed by IPS to provide and indication of ionospheric support.

Oblique HF activities @ SWS

- Space Weather Services / IPS activities in this area have been limited to
 - Providing online tools that use the ASAPS HF prediction model for Base-Area, Area-Base and Point-Point circuits.
 - Oblique Path monitoring (AUS/NZ) [discontinued ~2006]
 - WinRadio(SDR) HF circuit monitoring [discontinued ~2009]
 - DORS receiver @ Culgoora on loan from DSTGroup.
 - Are there any other sources of HF circuit data available?

WOW : Crowd sourced weather data

- Weather Observation Wwebsite was launched in the UK in 2011 and in Australia in early 2014.
- Backyard automatic weather stations (if capable) can supply information on temperature etc.
- Data is used to compliment the information obtained from the Bureau's weather stations across the country.

WSPRnet

- WeakSignalPropagatingReporter(WSPR)protocoldeveloped by Joe Taylor (K1JT).
- HF beacons operating in unlicensed band transmitting Call sign, Location and Tx Power.
- Receiving stations (if connected to the internet) can upload contacts to a database (WSPRnet).
- Provide HF users information on operating frequencies for circuits of interest.
- WSPRnet uploads in the order of 10's of thousands per hour.
- That's a lot of free HF circuit data
 what could we do with it?

2017-11-12 00:00UT WSPRnet samples=6408 y=3.59MHz g=5.28MHz r=7.03MHz b=10.13MHz m=14.09MHz c=18.10MHz o=21.09MHz s=24.92MHz n=28.12MHz

What could we use the data from WSPRnet for?

- 1. Validate Short Wave Fadeouts...
- 2. Validate ASAPS HF prediction model (via the SWS Digital HF tool)...

Short Wave Fadeouts

- A flare erupts on the sun sending X-rays rays towards the earth.
- X-rays penetrate further down into the ionosphere (the D-region).
- Increased ionisation in this region, increased HF absorption.
- The Absorption Limited Frequency (ALF) map shows- the lowest frequency able to propagate for circuits ~1500 km in length
- Circuits shorter than 1500 km, communications might be possible for slightly lower frequencies than the ALF.
- For longer circuits, higher frequencies than the ALF can be affected by the fadeout.

SOLAR SUMMARY Activity 06 Sep 2017: High

Flares	Max	Fadeout	Freq.	Sectors
M7.7	0928UT	probable	lower	Mid Eas
X9.3	1202UT	probable	all	Europea
M1.0	1731UT	possible	lower	Sth Am
M1.4	1931UT	possible	lower	E.Pacifi

- Mid East/Indian European
- Sth American/Atlantic
- E.Pacific/Nth America

WSPRnet SWF example

SOLAR SUMMARY Activity 06 Sep 2017: High

FlaresMaxFadeoutFreq.SectorsM7.70928UTprobablelowerMid East/IndianX9.31202UTprobableallEuropean

2017-09-06 13:50UT WSPRnet 14.10MHz Total samples=1970 red=[d<3100km) blue=[3100km>=d<4200] magenta=[d>=4200]

WSPR Spot Database

								WSP	WSPR Spot Database							
<u>WSPRnet.org Home</u>	<u>Sk</u>	<u>ed/Chat</u>	<u>page</u>			<u>Maps</u>	<u>Maps</u> <u>DB stat</u>		<u>itistics</u>							
Display options																
Band: All 🔻																
Number of spots: 50																
Search for call:																
Show spots heard by:																
Sort by: Date	Reverse ord	er 📃														
Find unique calls Fin	d unique repor	ters 🗌														
Go! Reset																
								Dener		D.L.A.						
Date	Call	Frequency	SND	Drift	Grid	d Rm	<u>ower</u> w	<u>kepor</u>		<u>UISC</u> km	<u>ance</u> mi					
$2017_{-}11_{-}14$ 23.18		14 007104	- 21	0	CM88ok	<u>48</u>	5 012		FI 16dd	2712	1685					
2017-11-14 23:18	NOUR	7.040121	- 17	0	FN33iu	+37	5.012	K5C7D	FM32	1265	786					
2017-11-14 23:18	G3JKF	3.594114	- 17	0	J000bs	+37	5.012	PAOMBO	J032ke	493	306					
2017-11-14 23:18	EB1HRW	7.040095	- 18	0	IN71pa	+37	5.012	ON7TA	J021fb	1255	780					
2017-11-14 23:18	G0IDE	3.594058	- 28	0	I083pq	+37	5.012	PA0MB0	J032ke	663	412					
2017-11-14 23:18	EA3IW	0.475759	- 26	Θ	JN11bj	+0	0.001	F4GUK/SDR	JN18et	825	513					
2017-11-14 23:18	K5ZRR	14.097109	- 16	Θ	EM82	+23	0.200	WN8Y	EM55oq	638	396					
2017-11-14 23:18	WA4KFZ	7.040147	+0	0	FM18gv	+37	5.012	VE3GHM	FN25ig	731	454					
2017-11-14 23:18	DK1BN/P	1.838196	- 25	0	J030tn	+40	10.000	PA0MB0	J032ke	188	117					
2017-11-14 23:18	TA4/G8SCU	7.040103	- 23	Θ	KM56ov	+37	5.012	G7VGY	IO90is	2994	1860					
2017-11-14 23:18	W60U	14.097153	- 15	Θ	DM13	+23	0.200	WA7MOX	EL16dd	2031	1262					
2017-11-14 23:18	WA4KFZ	7.040143	- 22	Θ	FM18gv	+37	5.012	K5CZD	EM32	1575	979					
2017-11-14 23:18	TA4/G8SCU	7.040099	- 12	Θ	KM56ov	+37	5.012	ON7TA	J021fb	2633	1636					

2017-11-14 @ 23:28UT Tx Call Sign: GOIDE Tx Frequency: 3.59MHz Tx Power: 37dBM Tx Location: I083pq (Maidenhead Locator System for encoding Lat/Lon) Rx Call Sign: PA0MB0

Rx SNR: -28dB

Rx Location: J032ke (Maidenhead Locator System for encoding Lat/Lon)

Digital HF tool example

Input Data:																	
Date: 14 11 201	7 T-i	ndex: 0025	5														
Tx Name: K6MCS	Lat:	38.69 deg	g Lo	ong: 23	8.62	deg											
Tx Antenna:Name	= Omni																
Rx Name: K5CZD	Lat:	32.56 deg	g Lo	ong: 26	57.79 (deg											
Rx Antenna:Name	= Omni																
Frequencies: 30	.000 28.12	5 24.925 2	21.095	18.105 1	4.096	10.139 7.0	039 5.28	7 3.5	93 MH:	Z							
Tx Power: 0.	01 kW																
Rx Bandwidth: 2	500.0 Hz	Rx Noise	e: -145	.0 dBW/H	lz at i	3 MHz											
Required SNR fo	r bandwidt	h: -28.0	dB														
Minimum Probabi	lity of io	nospheric	suppor	t: 90.	0 %								9	-			
Minimum elevati	on Angle:	5.0 deg	<u>,</u>								1	-	-15	D.			
Multipath Limit	s: Maximum	SNR Margi	in = .	30.0 dB													
	Minimum	relative	Delay :	= 1.0)0 ms									-0			
	Minimum	Frequency	y shitt	= 1.	00 HZ								~	20			
UT	F	requency S	Set (MH	z)			REL	DOM	BRR	0RR			5	\			
22 30 0 28	1 2/ 0 2	1 1 18 1	1/1 1	10 1	70	53 36	1/1 1	1/ 1	100 0	100	0						
BCR 50.0 20.	1 24.5 2	1.1 10.1	100 0	100.0 10	00.0	5.5 5.0	100 0	100 0	100.0	, 100.	•						
OCR			100.0	100.0 10	00.0		100.0	100.0									
SSM			10010 1F	2F	2F		1601.0 1F	100.00 1F									
DLA			9.40	9.23	9.21		9.40	9.40									
SIM									-								
PLS			126.5	12/ 0 1	0 22		126 5	126 5									_
LAN			5.10	Data	bas	е											
TAG			0.00														
THR1			3709	Specify	query	parameters											
THR2			1888	50 1													
THR3			629	50 spot	S:												
BER1			1	Timest	amn	Call	MHz		SNR	Drift	Grid	Pwr	Reporter	RGrid	km	37	
BER2			2298	most	amp	Vuii	111172		Unix	Dim	UTIN		Reporter	Nona	AIII		-
BER3			>9999	2017-1	1-14 22	2:26 K6MCS	14.09	7104	-14	0	CM98hq	2	K5CZD	EM32vn	2709	96	
MOD1			>10	3	T		>10	>10									-
MOD2			>10	1	1		>10	>10									
MOD3			1	1	1		1	1									

WSPR and ASAPS model validation

- Summary of work on WSPRnet
 - Development of an automated WSPR/ASAPS/T-index monitoring system is nearing completion
 - Validation of the ASAPS prediction model
 - Validation of real time T-index maps.
 - Validate effects of SWF (to compliment VIS ionosonde data).
- Issues regarding WSPR data
 - Tx/Rx antenna pattern is *unknown... cannot determine Tx EIRP.*
 - Assume isotropic Tx/Rx antenna and Tx power in WSPR data.
 - Rx noise environment is *unknown.... requires a calibrated receiver.*
 - Assumption for Rx noise level.

Thank you...

Phill Maher 02 92138009 p.maher@bom.gov.au

- Standard message components after lossless compression: 28 bits for callsign, 15 for locator, 7 for power level, 50 bits total.
- Number of binary channel symbols: N_sym = (50+K-1) * 2 = 162
- Keying rate: 12000/8192 = 1.4648 baud
- Modulation: continuous phase 4-FSK, tone separation 1.4648 Hz (BW: ~ 6Hz)
- Synchronization: 162-bit pseudo-random sync vector.
- Duration of transmission: 162 * 8192/12000 = 110.6 s.
- Minimum S/N for reception: around –28 dB in a 2500Hz bandwidth.