The INSPIRE-2 / AU03 Cubesat for the QB50 Project

Iver H. Cairns ¹, C. Charles ², A. Dempster ³, J. Funamoto ¹, J. Cheong ³,
W. Peacock ¹, J. Lam ³, B. Osborne ³, W. Andrew ³, T. Croston, ^{1,3}, B. Southwell ³,
R. Boswell ², A. Monger, ¹ C. Betters ¹, S. Leon-Saval ¹, J. Bland-Hawthorn ¹,
J. Khachan ¹, X. Wu ¹, S. Manidis ¹, H. Brown ¹, D. Dall ¹, and D. Tsifalkis ²

The INSPIRE-2 / AU03 Cubesat for the QB50 Project

Iver H. Cairns ¹, C. Charles ², A. Dempster ³, J. Funamoto ¹, J.W. Cheong ³,
W. Peacock ¹, J. Lam ³, B. Osborne ³, W. Andrew ³, T. Croston, ^{1,3}, B. Southwell ³,
R. Boswell ², A. Monger, ¹ C. Betters ¹, S. Leon-Saval ¹, J. Bland-Hawthorn ¹,
J. Khachan ¹, X. Wu ¹, S. Manidis ¹, H. Brown ¹, D. Dall ¹, and D. Tsifalkis ²

- 1. U. Sydney
- 2. ANU
- 3. UNSW

Mount Everes

• The 3 Australian QB50 CubeSats after thermal vacuum testing in Wombat-XL at ANU's AITC:

The INSPIRE-2 / AU03 CubeSat

• Started 30/9/2015 & delivered 19 August 2016 < 10 months

USydney: 3+ payloads, components, assembly, integration, testing, launch, overall project, legal, leadership,

- QB50 multi-Needle Langmuir probe (mNLP)
- Nanophotonic spectrograph (Nanospec)
- Radiation counter
- Microdosimeter

UNSW - Sydney: Spacecraft design, integration, testing, software

• Kea GPS instrument

ANU: Spacecraft COTS parts, groundstation, advice, AITC

Groundstations: ANU and UNSW

3. A Taste of the Science

- QB50 focusing on the science of the Earth's upper atmosphere $\approx 80 410$ km altitude:
 - Ionosphere (focus is on plasma)
 - Thermosphere (neutrals)
- Earth's environment & space weather ... changes with (t, r):
 - Daily (sunrise / sunset)
 - Season
 - Space weather (Solar X-ray flares → ionisation, heating, currents, energetic particles due to solar wind – ionosphere – magnetosphere coupling, ...).

3.1 mNLP: Ionosphere & thermosphere plasma density U.Oslo instrument –

AU03:R. Boswell, IHC, C. Charles, & J. Khachan

Will explore growth & properties of plasma tubes & new space weather in situ.

INSPIRE-2

"Plasma tubes in the sky", C. Loi et al., GRL, 2015

mNLP: major issues with IRI model for ionosphere & thermosphere plasma

→ INSPIRE-2 will test IRI & help develop better models

3.2 Radiation Counter & Microdosimeter: Space Weather at Earth

Sydney Pls: J. Khachan, X. Wu

Radiation Counter (J.Khachan), the EAUX PCB, and the Microdosimeter (X.Wu)

J. Funamoto, J.Lam (not pictured), W. Peacock

Pulses from the Radiation Counter

Radiation Counter [J.Khachan]

3.4 Nanospec: Photonic Spectrograph

U. Sydney Pls: S. Leon-Saval, C. Betters, J.Bland-Hawthorn

- Light \rightarrow optical fibres \rightarrow diffraction grating \rightarrow spectrum dispersed on a CCD
- Fully photonic with no moving parts and excellent spectral resolution
- First photonic lantern & nanophotonic spectrograph in space

Nanospec: Predicted resolution $R = \lambda/\Delta\lambda = 1400$ \rightarrow separate the 2 primary photosynthetic pathways for Australian native plants

Note: Data for earlier version of Nanospec

3.4 Kea GPS receiver: radio occultation, reflectometry, & position / attitude

UNSW PIs: A. Dempster, J.W. Cheong, ...

4. Design, Building, & Testing

- De-risk → modified version of UNSW design & mostly COTS
- Power, mechanical, layout design: B. Osborne, J.Funamoto, T. Croston
- Electronics & software design: J.Lam, B. Southwell, W. Andrew,

J.Funamoto & W. Peacock

Commercial Off-The-Shelf (COTS) parts ~\$80K - mostly from GOMspace, some Innovative Solutions in Space

ADCS board

Building: Hardware & Software

J. Funamoto & W. Peacock at USyd

- U. Sydney
- UNSW
- (Some at AITC too).

 Extremely demanding schedule with little margin for major problems ... (April start with initial delivery within 2 months)

INSPIRE-2: First stack (22 April 2016)

Testing at AITC: TVAC & Vibe (13 – 26 June 2016)

After TVAC in Wombat XL – fully deployed on command and nominal performance throughout.

Vibration Test (Quasi-static, z-axis) ... nominal.

Building, testing, & software finished (8 August)

Delivery to QB50 and then Nanoracks: AU03 first QB50 spacecraft ready for the fit test (16/8/2016).

Davide Masutti: QB50 Deputy Principal Investigator

INSPIRE-2 / AU03

5. INSPIRE-2 in Nanoracks Pod

First in ... First out !!

With Ukraine and South Korea CubeSats

6. Atlas V launch & deployment from ISS

INSPIRE-2 headed for outer space

7. First spacecraft health data for INSPIRE-2

- Spacecraft battery, solar cells, and temperatures all fine.
- Can see expected effects of day – night transitions
- Lots of media attention due to original contact issues.
- Do have downlink issues

All Beacon Data to 3 October

- Stable battery voltage
- See day-night variations
- Large changes in temperature with time. Why?
- Spacecraft went quiet for about 1.5 months. Why?
- Recovered spacecraft & reset beacon.
- Filesystem corrupted. Why?
- T_{com} = 0 now → Comms board damaged. Why?

Days since start time

8. Conclusions

- QB50 has 36 CubeSats: strength, composition, & variability of the lower thermosphere and ionosphere in position and time ("ignorosphere").
- INSPIRE-2 and 2 other Australian-built QB50 CubeSats are in space now, representing multiple firsts & a new beginning:
 - They demonstrate existence of Australian space capability and breaking the economic barrier to Australia entering space community
- INSPIRE-2 has 5 instruments (mNLP, Nanospec, Kea GPS, and 2 radiation detectors), 4 Australian, and a mostly COTS bus.
- INSPIRE-2: start to delivery in 10 months (first partial stack to delivery in 4 months). Cash cost < \$150 K. Multiple students.
- INSPIRE-2 is alive in space.
- High hopes for significant science but downlink issues.
- A new funded ARC Training Centre for CubeSats, UAVs, and Their Applications → 1 CubeSat flight a year for 5 years → Continuity and open for collaboration on space science, technology, and commercialisation.

Conclusions: INSPIRE-2 / AU03 Ready for Nanoracks & Launch

- 10 months from start to delivery / acceptance
- Novel science & technology (5 payloads, 4 Oz)
- De-risk with COTS and small-change design
- Strong collaborations AU03, AU02, AU01 → future

INSPIRE-2 / AU03

- Revised into a 3-university project from 30/9/2015:
 - University of Sydney
 - Australian National University
 - University of New South Wales (Sydney)
- Third Australian cubesat for QB50 (→ AU03)

An International Network of 50 double and triple CubeSats

in a string-of-pearls configuration for multi-point, in-situ, longduration exploration of the lower thermosphere (90 – 320 km). for re-entry research and for in-orbit demonstration of technologies and miniaturised sensors.