GIC Monitoring Equipment within the Queensland Transmission Network

Chuanli Zhang

Senior Secondary System Strategies Engineer Powerlink Queensland

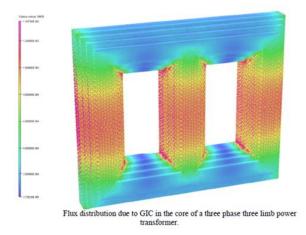
Power

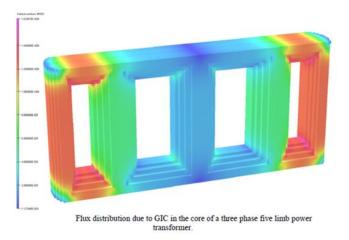
Overview

Overview

- Key drivers of GIC measurement
- Powerlink approach
- Design and implementation of GIC measurement based on conventional transducers
- Design and implementation of GIC measurement based on Non Conventional Instrument Transformer (NCIT)
- Powerlink mitigation strategies

Key Drivers

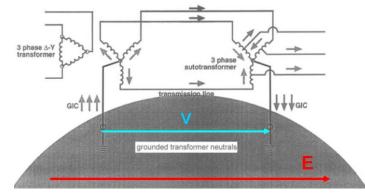

Key Drivers for GIC Monitoring System


- Impact of solar storms on electricity networks based on recorded global events
- Need for network reliability
- Further understanding & manage potential risks to a network
- Time needed to repair / replace damaged transformers
- More severe solar storm activity predicted by scientists
- PSSWG

Key Drivers for GIC Monitoring System

• Can cause abnormal heating within a transformer

Powerlink Approach


Corporate Approach

- A need to expand our understanding of GICs & impacts
- Consider our network in light of these new learnings
- DC model of our state-wide transmission network
- GIC measurements needed for calibration of the model
- Optimize and implement more GIC monitoring locations
- Develop a complete GIC alert system across the network

GIC Measurement Design based on Conventional Transducers

- Geomagnetically Induced Currents (GIC)
 - Typically GICs have a frequency between 0.001Hz 0.10 Hz
 - Potentially significant impacts on power transformers
- Target: Transformer neutral current

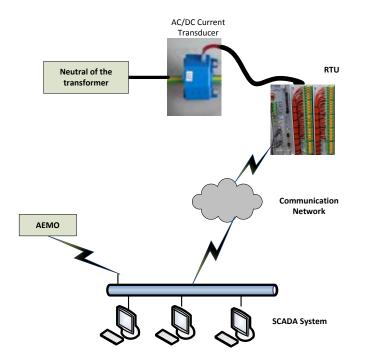
Hamilton Head Locations of GIC Measurement Large powers • oriented tr Middle R **MVA** • Influence NORTHERN Souther _ UEENSLAND Murarrie Northerr Australia _ Bowen N VA Aurarrie Subs Middle Ridge Substation Bolion

Instrumentation Requirements

- DC component measurement of transformer neutral current
- Reasonable accuracy +/- 0.5A
- Measurement if +/- DC GIC (AEMO convention is + for down into the earth)
- Scanned data at 4 seconds rate as per normal SCADA data
- Alarming functionality needed for high (pre-calculated) GIC levels
- A simplistic design suitable for sites of various control system topology
- Low cost solution

Design Considerations

- Design must reject high fault currents without electronic equipment damage
- Design must reject all AC components (i.e., imbalance in feeder currents)
- Typical transducers measure AC or AC+DC bias
- Unwanted signal noise associated with long cable runs

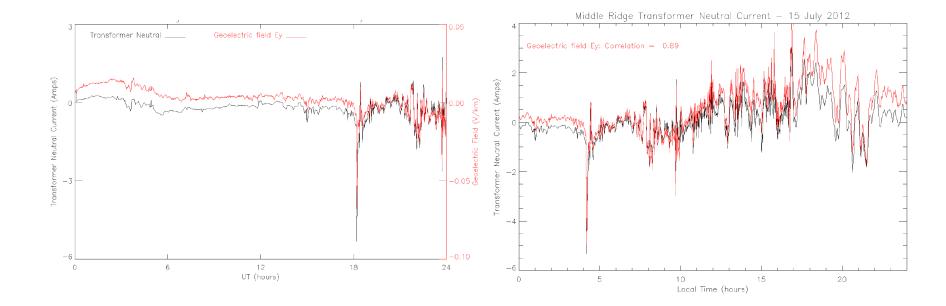


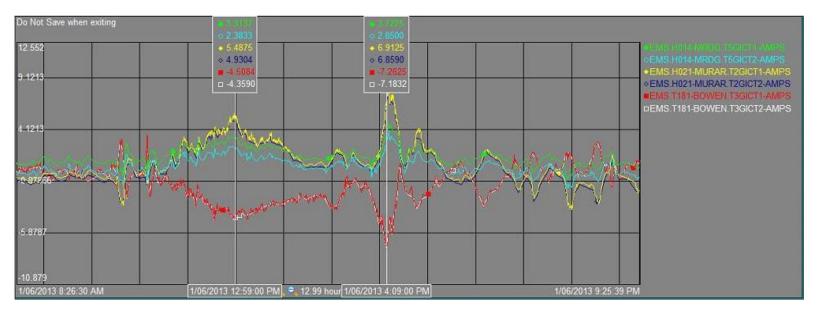
Implementation Details based on Transducers

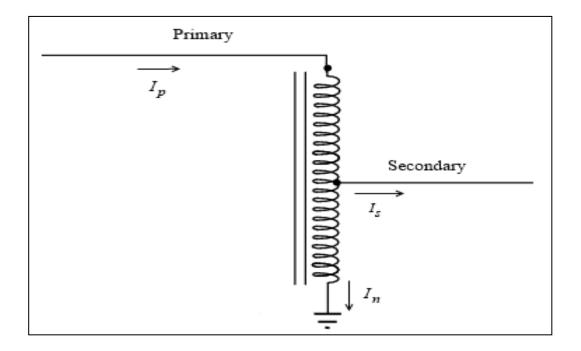
- AC/DC Transducer
- Nominal 500/0.1Amp current loop output
- Different ranges: 100A and 50A GIC level
- Transducer power supply rail voltage limits the maximum current / voltage input excursions to the RTU during high primary current fault conditions.
- The AC component is filtered out by the RTU input low pass filter

Measurement System Architecture

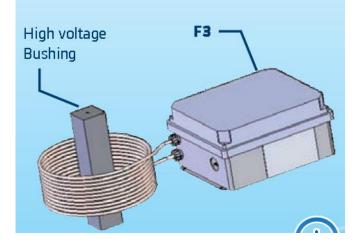
Field Implementation




Measurement Comparison between Transformer Neutral and Geoelectric Field

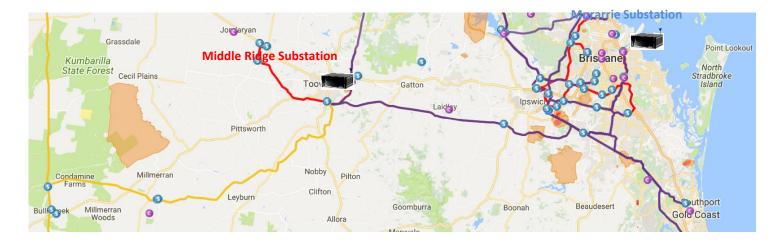

Results of GIC Measurements

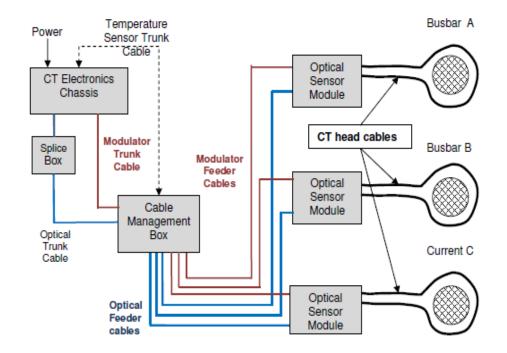
K6 events on 1/06/2013



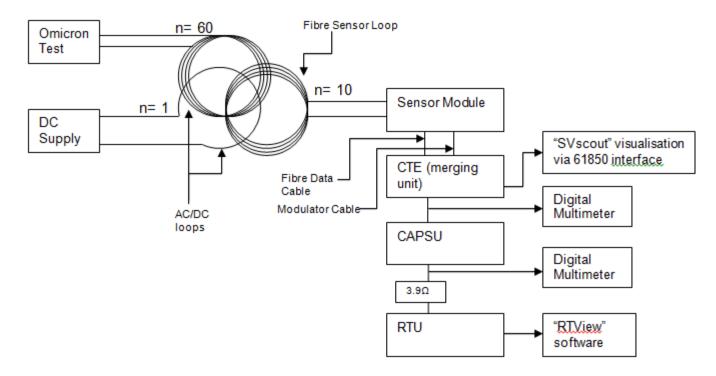

GIC Measurement on the HV Network (Autotransformer)

NCIT

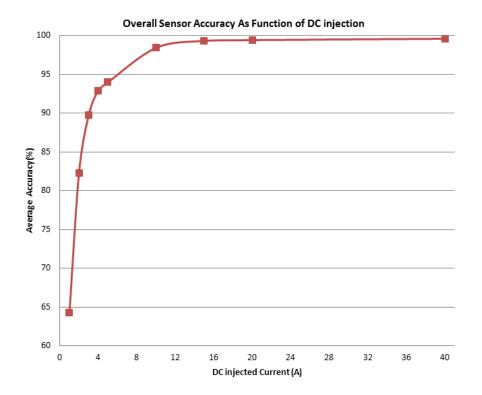



GIC Measurement of HV Network based on NCIT

- Middle Ridge substation: T5 330kV
- Murarrie substation: T2 275kV

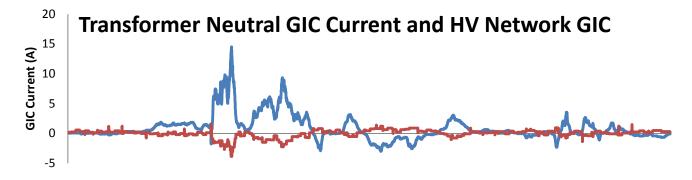


Non Conventional Instrument Transformer (NCIT)

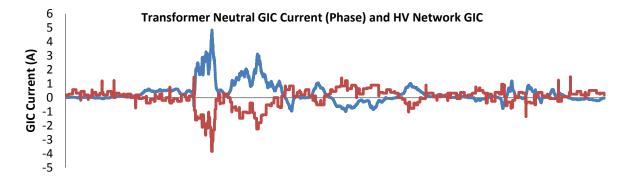


Test Schematic

Overall Sensor Accuracy


Field Implementation

Comparison of Transformer Neutral and HV Network GIC



l4:57:15 Time 0:49:15 :30:35 :51:15 :32:35 :53:15 :13:55 06:41:15 :38:35 :01:15 06:20:35 07:01:55 07:22:35 08:03:55 09:26:35 10:28:35 11:09:55 4:15:55 5:59:15 6:19:55 18:03:15 08:45:15 09:47:15 10:07:55 :11:55 13:34:35 :55:15 :36:35 :21:55 :43:1 08:24:3 09:05:5 ij 6:40:3 18:23:5 :17 -2 2 ŝ 2 08-Sep-17 08-Sep-1 08-Sep-17 08-Sep-17 08-Sep-17 08-Sep-1 08-Sep-1 08-Sep-1 08-Sep-1 08-Sep-1 08-Sep-1 08-Sep-1 08-Sep-1 08-Sep-1 08-Sep-1

Time

Comparison of Transformer Neutral and HV Network GIC (K7 – G3)

Time 07:32:35 07:55:45 4:29:35 5:15:55 :58:05 1:01:05 06:23:05 06:46:15 07:09:25 12:10:35 13:20:05 14:06:25 14:52:45 15:39:05 17:34:55 18:21:15 08:42:05 09:51:35 10:14:45 10:37:55 11:24:15 2:33:45 12:56:55 3:43:15 16:02:15 16:25:25 16:48:35 :47:25 08:18:5 09:28:2 09:05:1 08-Sep-17 08-Sep-1 08-Sep-1 08-Sep-1

Time

Impacts of Initial GIC Results

- Correlating results with predictions of the Powerlink GIC DC network model
- Calibrating the DC network model
- Need a better understanding of coastal affects
- Have a better understanding of GIC durations
- Will be doing further correlation between BOM and Powerlink GIC measurement data and network model

Potential GIC Mitigation Strategies

- Provide alert and trip the transformer by the on-line GIC monitoring system.
- Plan outages for critical primary plant to avoid possible damage caused by GIC / solar storm activity
- For high density networks, perhaps ensure as much of the network is in to distribute out the GIC?
- Installing NERs could cause non-solidly bonded network and may not solve the auto-transformer issue.

Conclusions

Conclusions

- Detailed GIC measurement based on conventional transducers and NCIT
- Calibration and refinement of the GIC model is needed
- Measurements are needed at more locations.
- Development of a mitigation strategy

